Sensory Evaluation of Foods for Product Development

Goals

- By the end of this class, students will be able to:
 - Define sensory science and give examples of common applications to food product development
 - Determine the appropriate category of sensory test for a given research question
 - Identify sources of potential bias that will need to be controlled when given a sensory testing scenario

Intro to Sensory Science

What is Sensory Science?

- The goals of Sensory Evaluation are "...to evoke, measure, analyze, and interpret [human] responses to products as perceived through the senses..." (Lawless & Heymann, 2010)
- The senses:
 - Smell
 - Taste
 - Touch
 - Sight
 - Hearing
- Using people as instruments to measure something true about a product

Common Applications to PD

How are changes to a food perceived and liked?

How much is a food liked overall?

Is one product preferred over another?

Product vs. competitor

New formulation vs. existing product line

Multiple potential formulations

Types of Sensory Tests

Types of Sensory Tests

Discrimination Testing

There are many discrimination tests...

Table 4.1 Types of available discrimination tests

Class of test	Test	Samples: inspection phase	Samples: test phase	Task/instructions	Chance probability
Oddity	Triangle	(None)	A, A', B (or A, B, B')	Choose the most different sample	1/3
Matching	Constant reference duo-trio	Ref-A	A, B	Match sample to reference	1/2
	Balanced reference duo-trio	Ref-A, Ref-B	A, B	Match sample to reference	1/2
	ABX	Ref-A, Ref-B	A (or B)	Match sample to reference	1/2
	Dual standard	Ref-A, Ref-B	A, B	Match both pairs	1/2
Forced choice	Paired comparison	(None)	A, B	Choose sample with most of specified attribute	1/2
	3-AFC	(None)	A, A',B	(Same)	1/3
	n-AFC	(None)	$A_1 - A_{n-1}, B$	(Same)	1/n
	Dual pair	(None)	A, B and A, A'	Choose A, B (different pair)	1/2
Sorting	Two out of five	(None)	A, A', B, B', B''	Sort into two groups	1/10
	4/8 "Harris-Kalmus"	(None)	$A_1 - A_4, B_1 - B_4$	Sort into two groups	1/70
Yes/no	Same-different	(None)	Pairs: A, A' or A, B	Choose response: "Same" or "different"	N/A ^a
(Response choice)	A, not-A	Ref-A	A or B	Choose response: "A" or "not-A"	N/A ^a

...but they all answer the same question

- Does a sensory difference exist between products?
- Or, more accurately: How likely is it that a random consumer will notice any difference?
- Discrimination tests only tell us if there is variation, not the nature or magnitude of any differences

Common Discrimination Tests

Triangle

- "Pick the sample which is unlike the other two."
- 1/3 guessing chance
- Undirected (test measures overall difference)

Tetrad

- "Make two groups of two samples each based on similarity."
- 1/3 guessing chance
- Can be directed or undirected

Paired Comparison

- "Pick the sample which is sweeter."
- 1/2 guessing chance
- Directed (test names a specific difference)

Directed (Attribute-Specific) Tests

- When a specific difference is known or expected, attribute-specific tests may be more appropriate
- Pro Panelists become more sensitive to small differences
- Con Only useful in specific circumstances
 - Must know how the samples are expected to differ
 - Panelists must be familiar with the expected difference

The Trouble with "Proving" Similarity

- We <u>cannot</u> prove that the samples are the same with a normal hypothesis test
- Easy ways to minimize the chance of missing a difference:
 - Increase number of participants
 - Use a more sensitive test

Types of Sensory Tests

Preference Testing

- You already know that there's a difference, so...
- Do consumers like one product more than another?
- Tells you about <u>preference</u>, but not how well-liked any single product is.
- Good when you're interested in a limited set of products or you have a "gold standard"

Types of Preference Tests

- Very similar to discrimination testing
- Paired Preference
 - The same setup as a paired comparison test
 - "Which sample do you like more?"
- Ranking
 - Preference test for more than 2 samples.
 - "Rank the n samples from most liked (1) to least liked (n)."
 - All samples must be presented to the panelist at once

Types of Sensory Tests

Acceptance or Hedonic testing

- The *other* method to determine liking is to scale it ("on a scale from 1 to 10...")
- Advantages over preference testing
 - You can compare to products tested at other times
 - Provides information about absolute liking or disliking
 - More samples can be tested easily

Other Affective Tests

- Self-reported liking (e.g. on the 9-point hedonic scale) doesn't predict success of new products very well
- So what else can we measure? Vast area of research in consumer sciences
 - Focus groups (Qualitative data record a few hours of moderator talking with consumers about the product category, interacting with example products)
 - Willingness to pay ("How much would you pay for this product" / "Would you purchase this product at this price point?")
 - Experimental auctions
 - Measure emotional response (self-reported, using facial recognition, etc)

Types of Sensory Tests

Descriptive Analysis

- <u>Describes</u> and <u>quantifies</u> the distinct attributes of a product
- Attributes Specific, distinct, named flavors, textures, aromas, etc.
- Phase 1 Identify the attributes
 to be measured
- Phase 2 Measure the attributes

Descriptive Analysis

Pros

- Can link flavors to ingredients or processes
- Once a panel is trained, relatively easy to analyze new samples
- Attribute vocabulary good for marketing

• Cons

- Panelists must be trained extensively
- Need diverse examples of product category to develop a list of attributes

Types of Sensory Tests

Practice Activity: Match the test type

Does a sensory difference exist Discrimination between Test products? Which product is Preference preferred? Test Is the product acceptable? / Acceptance How much is the Test product liked? What are the Descriptive sensory characteristics of Analysis the product?

- Your spice company is developing a new MSG-free Cajun seasoning and wants to know if consumers think the new product tastes worse than your existing Cajun seasoning.
- 2. You work for a premium potato chip producer and want to understand what differences there are between existing commercial potato chips to make a line extension that is new and unique.
- 3. The marketing department has told you that a wasabi-flavored ice cream will sell well, and you want to know if potential consumers like the flavor of the prototype.

Good Sensory Practices

Sources of Unwanted Variation

Inter-subject variability

Irrelevant product variation

Environmental variability

Survey design

Inter-Subject Variability

- People are different!
 - Genetics, experience, personal preferences, degree of training
- Appropriate controls
 - Big sample size (i.e. number of participants), especially for affective testing (preference/acceptability)
 - Panelist training for analytic testing (discrimination/descriptive)
 - Sample panelists randomly from your product's target demographic for affective testing

Irrelevant Product Variation

- People aren't good at ignoring differences that aren't relevant to what they're measuring
- If we're testing the effect of X on Y, we want all the samples with the same level of X to be the same!
 - Product color, texture, appearance may or may not matter depending on the research question
 - Changes in product over time (e.g. temperature, volatile loss, staling)
 - Batch-to-batch or sample-to-sample variability

Irrelevant Product Variation

- Appropriate Controls
 - Standardize the presentation of all samples
 - Have a written sample preparation protocol that covers preparation, serving amounts, temperature, timeline, etc.
 - Use red lights or opaque serving containers to mask irrelevant differences in appearance
 - Do not use a directed discrimination test for products with complex differences

Environmental Variability

- The environment someone eats in isn't a part of the product!
 - Extraneous smells, sounds, differences in lighting, etc affect the sensory experience
- Branding or information about how the samples differ primes people to respond in certain (biased) ways
- Appropriate Controls
 - Hide branding and other info using blinding codes
 - Use booths or dividers to isolate panelists from distractions
 - Avoid strong-smelling cleaners, foods, etc near the sensory testing area

Survey Design

- The answers people give depend on what you ask!
 - The wording of each question affects the answers to that question and all subsequent questions
 - The panelists will not read instructions the same way you do
 - Panelists may become bored or tired
 - Product expectations (e.g. neutral liking) differ based on previous samples
- Appropriate Controls
 - Randomize your serving orders using an experimental design
 - Defer to existing resources for the wording of questions, like published papers or textbooks (Lawless and Heymann, 2010)

Goals

- Students will be able to:
 - Define sensory science and give examples of common applications to food product development
 - Determine the appropriate category of sensory test for a given research question
 - Identify sources of potential bias that will need to be controlled when given a sensory testing scenario

References

- Lawless, H. T., & Heymann, H. (2010). Sensory Evaluation of Food: Principles and Practices. Elementary Food Science (2nd Editio). Springer. https://doi.org/10.1007/978-1-4419-6488-5
- Toet, A., Kaneko, D., Ushiama, S., Hoving, S., de Kruijf, I., Brouwer, A., Kallen, V., & van Erp J. B. F. (2018). EmojiGrid: A 2D Pictorial Scale for the Assessment of Food Elicited Emotions. In *Frontiers in Psychology* 9:2396. https://doi.org/10.3389/fpsyg.2018.02396